Panda lab’s open-source libraries give big data users high-performance speeds

In the world of big data, computer technology holds the keys to the castle—computer software that’s built to store, sort, and interpret information collected in data analytics projects. The better the computer and software, the more efficiently it operates to access and assess data.

DK Panda

DK Panda

The Network Based Computer Laboratory (NBCL) at Ohio State, led by Dhabaleswar Panda, PhD, Professor and Distinguished Scholar of Computer Science and Engineering, has created innovative technology that dramatically improves efficiency in data analysis. Called HiBD, or High Performance Big Data, it is a set of libraries geared for use with applications using big data middleware such as Hadoop and Spark. When used with open-standard InfiniBand networking technology, HiBD permits modern clusters of computers running such applications to work efficiently together to process data like a supercomputer.

Users that include 165 organizations worldwide have downloaded NBCL’s HiBD software packages more than 16,350 times, including well-known entities such as Flickr, HP, IBM, Intel, LinkedIn, and Oracle as well as international institutions such as The Chinese Academy of Sciences and the Swiss National Supercomputing Center.

The origins of HiBD stem from an earlier project NBCL developed for high-performance computing with clusters. When InfiniBand networking technology was launched in 2000, NBCL created the first open source software stack to put the technology to work in supercomputing with commodity clusters of computers. Called MVAPICH (now MVAPICH2), that software stack, which caters to more traditional applications written with Message Passing Interface middleware, has had more than 373,000 downloads since its inception, and has been used by institutions such as NASA and the United States Air Force and Army.

The focus on newer big data applications, says Panda, was a natural step as the field of data analytics grew in academic popularity. It started with a question, he says: “We asked, how can we bring our knowledge about high-performance computing into the field of big data?”

The answers to that question—HiBD and MVAPICH—will continue to evolve as different technology and programming models become available, Panda says.

Unlike many other innovations in supercomputing, both HiBD and MVAPICH are free to any person or institution who might want to download them. As such, the software stacks developed by NBCL often get integrated into other packages from developers that might be viewed as competitors. But, as Panda says, “The community knows where the software libraries came from.”

Share this page
Suggested Articles
Maximizing the effectiveness and ethical use of big data analytics

Dennis Hirsch Applying analytics to personal data can produce immense value for society—but how that data is used is key to preventing the privacy and cybersecurity violations and even discrimination...

Call for papers: Political Networks Conference and Workshops

TDA is co-sponsoring the 10th Annual Political Networks Conference and Workshops, which Ohio State will host June 14-17. The program chairs and host committee are pleased to invite proposal submissions for...

Nandi receives IEEE Early Career Award, credits collaborators

Arnab Nandi The notion of a database search without a keyword sounds paradoxical. How can you search for something you can’t name? TDA affiliate Arnab Nandi, PhD, Assistant Professor in Computer...

ASA DataFest teams tackle Ticketmaster data

Diverse academic backgrounds made for interesting insights from the winning teams at Ohio State’s first-ever ASA DataFest, where participants spent nearly 24 hours extracting insights from 3GB of data from Ticketmaster. The event,...

User-generated data is a social science goldmine

As increasing amounts of digital data are produced and stored online it is important to remember that humans produce much of that data. In an era in which people express...