Organizing Committee:
Hassen Drira, France
Sebastian Kurtek, USA
Anuj Srivastava, USA
Pavan Turaga, USA

Keynote Speakers:
Rama Chellappa, USA
Baba Vemuri, USA

Program Committee:
Saket Anand
Martin Bauer
Martins Bruveris
Gregory Chirikjian
Ian Dryden
Aasa Feragen
Mark Girolami
Venu Govindu
Minh Ha Quang
Mehrtash Harandi
Richard Hartley
Soren Hauberg
David Jacobs
Ian H. Jermy
Shantanu Joshi
Yui Man Lui
Hamid Laga
Daniel Lee
Jon Lenchner
Edgar Lobaton
Frank Nielsen
Xavier Pennec
Fatih Porikli
Vikas Singh
Stefan Sommer
Suvirot Sra
Baba Vemuri
Rene Vidal

Riemannian geometry is gaining popularity in the vision and pattern recognition communities as an important tool for analyzing structures and their variabilities in high-dimensional observation spaces. In particular, Riemannian tools have successfully been applied to several vision problems such as crowd tracking, face recognition, activity recognition, object detection, biomedical diagnosis, and structure-from-motion. In addition to providing nice mathematical formulations, Riemannian approaches exploit geometries of underlying manifolds and lead to faster, more stable algorithms than their Euclidean counterparts. Specific examples of manifolds frequently encountered in vision problems include shape spaces, rigid motions, set of subspaces, covariance matrices, probability distributions, and image deformations. More recently, there have been developments in adapting machine learning algorithms, especially kernel-based approaches, to nonlinear domains using Riemannian geometry. The topics of interest include, but are not limited to:

- Shape Representations: Silhouettes, Surfaces, Skeletons, Humans, etc.
- Information Geometry: Fisher-Rao and elastic metrics, Gromov-Wasserstein family, Earth-Mover’s distance, etc.
- Dynamical Systems: Trajectories on manifolds, Rate-invariance, Identification and classification of systems.
- Domain Transfer: Ideas and applications.
- Image/Volume/Trajectory: Spatial and temporal registration & segmentation.
- Manifold-Valued Features: Histograms, Covariance, Symmetric positive-definite matrices, Mixture models.
- Big Data: Dimension reduction using geometric tools.
- Bayesian Inferences: Nonlinear domains, Computational solutions using differential geometry, Variational approaches.
- Functional Data Analysis: Hilbert manifolds, Visualization.
- Applications: Medical analysis, Biometrics, Biology, Environmetrics, Graphics, Activity recognition, Bioinformatics, Pattern recognition, etc.
- Geometry of articulated bodies: Applications to robotics, biomechanics, and motor control.
- Computational topology and applications.

Original papers related to the topics of interest listed above can be submitted through the workshop webpage. Papers covering theory and/or application areas of computer vision are invited for submission. All papers will be reviewed under the double blind review process. Submitted papers should follow the same formatting style as a CVPR conference paper.

IMPORTANT DATES
- March 25th, 2016: Deadline for workshop paper submission
- April 15th, 2016: Paper reviews due
- April 22nd, 2016: Decisions released to authors
- May 2nd, 2016: Deadline for submitting camera-ready papers